Model based estimation of ellipsoidal object using artificial electric sense

نویسندگان

  • Sylvain Lanneau
  • Frédéric Boyer
  • Vincent Lebastard
  • Stéphane Bazeille
چکیده

In this article we address the issue of shape estimation using electric sense inspired by the active electric fish. These fish can perceive their environment by measuring the perturbations in a self-generated electric field caused by nearby objects. The approach proceeded in three stages. Firstly the object was detected and its electric properties (insulator or conductor) identified. Secondly, the object was localized using the MUSIC (MUltiple SIgnal Classification) algorithm, which was originally developed to localize a radio wave emitter using a network of antennas. Thirdly, the shape estimation relied on the concept of generalized polarization tensor (GPT), which enabled modeling the electric response of an object polarized by an ambient electric field. We describe the implementation of the approach through numerous experiments. The system was able to estimate shape with an average error of 16%, and opened the way toward further improvements. In particular, self aligning the sensor with the ellipsoid through a reactive feedback makes the shape estimation errors drop to 10%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction Motor Electric Parameters Estimation Using Artificial Neural Networkds and its Application in industrial Load Modeling

Load modeling is widely used in power system studies. Two types of modeling, namely, static and dynamic, are employed. The current industrial practice is the static modeling. Static modelss are algebraic equations of active and reactive power changes in terms of voltage and frequency deviations. In this paper, a component based on static modeling is employed in which the aggregate model is deri...

متن کامل

Induction Motor Electric Parameters Estimation Using Artificial Neural Networkds and its Application in industrial Load Modeling

Load modeling is widely used in power system studies. Two types of modeling, namely, static and dynamic, are employed. The current industrial practice is the static modeling. Static modelss are algebraic equations of active and reactive power changes in terms of voltage and frequency deviations. In this paper, a component based on static modeling is employed in which the aggregate model is deri...

متن کامل

Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models

Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....

متن کامل

Water Quality Index Estimation Model for Aquaculture System Using Artificial Neural Network

Water Quality plays an important role in attaining a sustainable aquaculture system, its cumulative effect can make or mar the entire system. The amount of dissolved oxygen (DO) alongside other parameters such as temperature, pH, alkalinity and conductivity are often used to estimate the water quality index (WQI) in aquaculture. There exist different approaches for the estimation of the quality...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017